Disaster-Related Statistics in Pakistan

Understanding Pakistan's Vulnerability

Geographic Diversity & Hazards

- Mountain ranges to coastal plains
- Floods: Monsoons, glacial melts
- Earthquakes: Seismically active

zones

- Heatwaves: Rising temperatures
- Droughts: Water scarcity
- Pandemics: COVID-19

experience

Recent Major Disasters

2022 Floods:

- 33M affected, \$30B+ damages
- 1,739 deaths

2024-2025 Floods:

- 1,037 deaths, 1,067 injuries
- 229,763 houses damaged
- Rs 744B economic loss

Climate change amplifying disaster frequency - 70 districts affected in 2025

Census 2023: Vulnerability Indicators

Total Population

241.5M

50% under age 20

Housing Vulnerability

62% Kacha/Semi-Pakka

Flood & earthquake prone

Firewood for Cooking

52.7%

Indoor pollution + deforestation

Rural Population

61.1%

Limited early warning access

Out of School (5-16)

35.6%

22.8M children at risk

Avg Household Size

6.3 persons

Overcrowding increases risk

Source: 7th Population & Housing Census 2023 (Digital Census) - First ever digital census of Pakistan

National Policy Framework & PBS Role

Key Policy Documents

- National Disaster Management
 Plan
- Climate Risk Screening Handbook (2025)
- Sendai Framework & SDG 1, 11,
 13

1. Pre-Disaster

Risk assessment & vulnerability mapping

3. Post-Disaster

Recovery monitoring & impact evaluation

Climate Risk Screening

- CHIRA: Initial Risk Assessment
- CARA: Adaptation & Resilience
- CMA: Mitigation Assessment

2. During Disaster

Rapid damage assessment with GIS

4. Mainstreaming

Integration with development planning

Measuring What Matters: Indicators Framework

Human Impact

- ✓ Deaths & injuries
- √ Missing persons
- ✓ Displaced
- population
- ✓ Affected population (age, sex, disability)

Economic Losses

- √ Housing damage
 (Kacha vs Pakka)
- √ Agricultural losses
- ✓ Livestock deaths
- (22,841 in 2025)
- ✓ Infrastructure damage

Risk Indicators

- ✓ Population in hazard zones
- ✓ Infrastructure exposure
- √ Vulnerability indices

Data Gaps We're Addressing (CIME Framework)

→ Real-time data collection → Geospatial integration → Continuous infrastructure inventories

Case Study 1: 2022 Floods - Breakthrough Innovation

The Challenge

33 million affected • • 1,739 deaths • • \$30+ billion damages

Traditional survey methods too slow - unprecedented scale required new approach

1. Flood Extent Mapping

- Satellite imagery analysis
- Digital flood boundaries
- Ground truthing validation
- Remote sensing integration

2. Geospatial Intersection

- Overlaid with census enumeration areas
- Precise affected area ID
- Population estimation accuracy
- 120,000 tablets deployed

M Assessment time reduced from MONTHS to WEEKS

2022 Floods: Comprehensive Damage Assessment

Data Collection Innovations

■ Mobile tablet surveys • Real-time transmission • Georeferenced

data • **GIS** integration

✓ Affected Population

Disaggregated by age/sex

√ Housing Damage

Kacha vs Pakka structures

✓ Livestock Losses

Cattle, goats, poultry

✓ Livelihood Impacts

By occupation type

√ Source of Income

Agricultural workers, daily wage

√ Critical Infrastructure

Schools, health facilities

Dashboard Features

Interactive maps • District/Tehsil/EA disaggregation • Temporal analysis • Relief distribution tracking

Case Study 2: 2024-2025 Floods - Enhanced Capabilities

2024-2025 Flood Impact

1,037 deaths | 1,067 injuries

229,763 houses damaged

Rs 744 billion economic loss

70 districts affected across

Pakistan

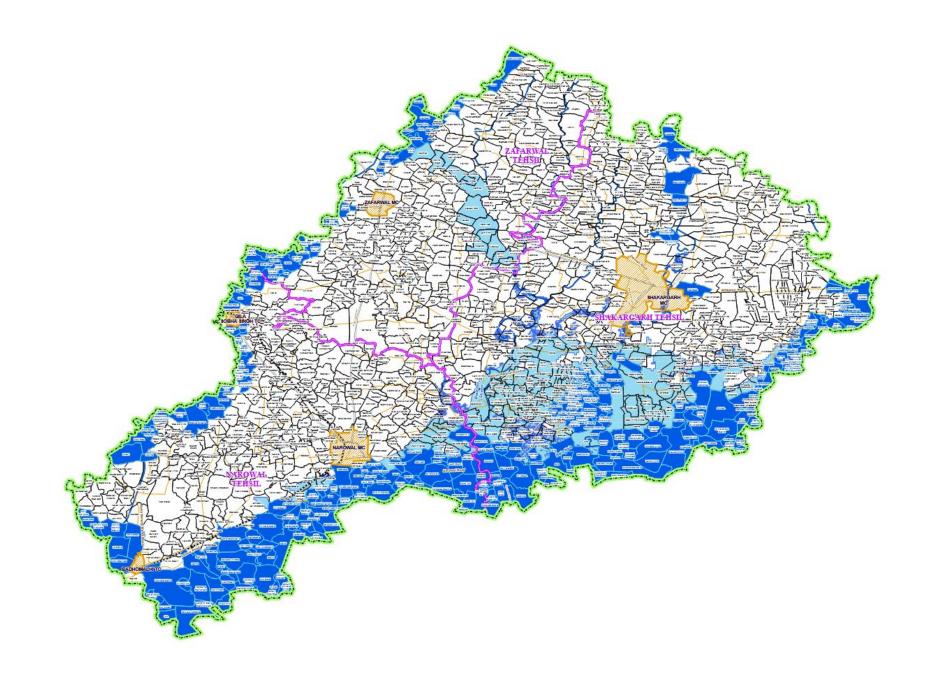
Enhanced Capabilities

- √ Automated reporting systems
- ✓ Real-time decision-maker updates

Provincial Distribution of Losses (Rs 744B Total)

Punjab: Rs 632B (84.9%)

KP: Rs 51B (6.9%)


Sindh: Rs 32B (4.3%)

GB: Rs 13B (1.7%)

AJK: Rs 9B (1.2%)

Balochistan: Rs 7B (0.9%)

♀ GIS-based methodology now STANDARD PRACTICE for PBS disaster response

Advanced GIS: Predictive Risk Assessment

NatCat Model & Return Period Analysis

- 50-year return period flood mapping
- Riverine & urban flood risk combined
- Heatwave extreme temperature risk
- Areas with 60% of Pakistan's GDP at highest risk

Top 10 Most Vulnerable Districts

- 1. Muzaffargarh (Punjab)
- 2. Multan (Punjab)
- 3. Bhakkar (Punjab)
- 4. Dadu (Sindh)
- 5. Bahawalpur (Punjab)

Critical Infrastructure Exposed to Riverine Flooding

Health Facilities

Most exposed:

130 in Multan district Top 10 districts: 413

facilities

Educational Institutes

Most exposed:

1,394 in Naushahro Feroze

Top 10 districts: 8,717

institutes

Road Networks

Most exposed:

1,018 km in Multan

Top 10 districts: 5,366 km

Census 2023 Data: Housing Vulnerability in Flood Zones

- 62% Kacha/Semi-Pakka houses in vulnerable districts (mud, thatch construction)
- 6.3 persons per household = high congestion during evacuations
- 35.6% children out of school = reduced disaster preparedness knowledge

Case Study 3: COVID-19 Pandemic Response

The Challenge: Track disease spread • Identify hotspots • Support resource allocation (hospitals, testing, vaccination)

1. Patient Geocoding

- Geocoded patient addresses
- Aggregated to enumeration areas
- Privacy protected through aggregation

2. Choropleth Mapping

- Visualized case density
- Identified emerging hotspots
- Tracked temporal trends daily

3. Population Integration

- Calculated infection rates
- Identified vulnerable populations
- Supported targeted interventions

Impact on Public Health Response

✓ Enabled targeted lockdowns ✓ Optimized testing drives ✓ Guided vaccination campaigns ✓ Shared with provincial governments

Climate Risk Screening: Mainstreaming at PBS

Pakistan's Climate Risk Screening Handbook (2025)

Planning Commission's standardized framework for all PSDP projects - PBS now applies to all disaster assessments

CHIRA

Climate & Hazard Initial Risk Assessment

- High-level screening
- Risk scoring (0-20 scale)
- For ALL projects
- PCN & PC-I stage

CARA

Climate Adaptation & Resilience Assessment

- Medium/High risk projects
- Vulnerability assessment
- Adaptation options
- PC-II stage

CMA

Climate Mitigation Assessment

- GHG emissions tracking
- Baseline vs project scenario
- Mitigation planning
- Carbon accounting

CIME: Climate Indicators for M&E

PBS now tracks climate indicators at output, outcome & impact levels for all disaster-related projects

Building a Disaster Data Ecosystem

Primary Data Sources

Population & Housing Census 2023

(241.5M population, 38.3M households)

- Administrative records (NDMA, PDMAs)
- Field surveys & rapid assessments
- Satellite imagery (SUPARCO)

Key Partnerships

National:

NDMA, PDMAs, Climate Change Ministry,

Finance Ministry, Planning Commission

SUPARCO, NADRA, Universities,

UN agencies, World Bank, ADB,

Development partners

Integration Achievements

Census 2023 Integration

Enumeration areas = geographic framework for all disaster data

Predictive Modeling

50-year return period analysis, vulnerability mapping

Real-time Systems

120,000 tablets, digital data collection, live dashboards

Open Data

API access for government agencies, public data portal

No single agency can handle disaster data alone - partnerships are essential

Overcoming Barriers to Quality Disaster Statistics

Evolution of PBS Disaster Statistics Capabilities

Challenge	Solution Implemented	Remaining Gaps
Timeliness	Mobile data, GIS automation, 120K tablets	Need real-time sensor networks
S Coordination	Data sharing protocols, PBS as hub	Formalize legal framework
Disaggregation	survey design, census linkage	Better disability data collection
S Capacity	Training programs, university partnerships	Staff retention, continuous learning
8 Resources	Leveraged census infrastructure	Sustainable funding for disaster stats
Prediction	NatCat Model, return period analysis	Expand to all hazard types

© Census enumeration areas + GIS technology = Foundation for modern disaster statistics

Key Insights from Pakistan's Experience

√ What Worked

- 1. Leverage census infrastructure (38.3M households, enumeration areas)
- 2. Start small, scale up $(2022 \text{ pilot} \rightarrow 2024-25 \text{ full deployment})$
- 3. Technology as enabler (120K tablets, real-time dashboards)
- 4. Partnerships essential (NDMA, SUPARCO, provinces)
- 5. User-driven approach (Meeting policymaker needs)

⚠ What We'd Do Differently

- Start capacity building earlier (GIS training takes time)
- Formal data sharing agreements upfront (Legal framework for interagency data)
- More investment in documentation (Methodology, metadata standards)
- Build system redundancy (Backup servers, alternative staff)
- Better disability data collection (Vulnerable population assessment)

Critical Success Factors

- √ Leadership commitment at PBS
- ✓ Support from disaster authorities
- ✓ Technical assistance from partners
- ✓ Willingness to innovate & learn

- ✓ Digital Census 2023 infrastructure
- ✓ Climate Risk Screening framework
- √ 241.5M population baseline data
- ✓ Real-time monitoring systems

Don't wait for the perfect system - start with what you have and improve iteratively!

Recommendations for NSOs Starting This Journey

- Assess current capabilities
 infrastructure
- 2. Identify key users & their data needs
- 3. Start with one disaster type (floods/droughts)
- 4. Establish partnerships early (disaster agencies)

Building Capacity

- 5. Invest in GIS training for staff
- 6. Use open-source tools (QGIS, R, Python)
- 7. Document everything (methods, metadata)
- 8. Learn from peers regionally

Ensuring Sustainability

- 9. Mainstream into regular budget
- 10. Create SOPs for rapid deployment
- 11. Engage with international frameworks
- 12. Adopt climate risk screening (CHIRA/CARA)

Recommended Tools (Open Source)

QGIS (GIS) • R/Python (analysis) • ODK/KoboToolbox (mobile data) • Apache Superset (dashboards)

Pakistan Bureau of Statistics welcomes knowledge exchange and collaboration

PBS Vision for Disaster Statistics 2025-2030

2025-2026

Short-term ✓ Expand GIS to all hazard

types

✓ Climate risk screening for all PSDP projects

√ Complete district vulnerability mapping

√ Real-time early warning integration

2027-2028

Medium-term

✓ Integrated disaster data warehouse

✓ Predictive analytics for compound hazards

✓ PM's Climate Resilience framework alignment

2029-2030

Long-term

✓ Full Sendai Framework reporting

✓ Machine learning for risk prediction

✓ Regional expertise hub for Asia-Pacific

Strategic PrioritiesTechnical:

- Advanced geospatial analytics
- Machine learning for disaster prediction
- Climate model integration

Institutional:

- Formalize inter-agency coordination
- Build provincial capacity
- Strengthen regional networks

Key Takeaways: Pakistan's Disaster Statistics Journey

From →

- Traditional paper surveys
- Delayed reporting (months)
- Siloed data systems
- Disaster response only
- Aggregate statistics
- Limited spatial analysis
- Manual data processing

To √

- Digital Census 2023 (120K tablets)
- Real-time dashboards (weeks)
- Integrated systems (NDMA, SUPARCO)
- Risk-informed development
- Advanced GIS & predictive modeling
- Automated analytics

Core Message

Disaster statistics are not just numbers - they represent lives, livelihoods, and the path to resilience.

NSOs have a critical role in transforming data into actionable intelligence for disaster risk reduction.

Our Commitment

Pakistan Bureau of Statistics is committed to continuous improvement and regional cooperation in advancing disaster-related statistics for sustainable development.

Thank You